Approximation in the Zygmund Class

Odí Soler i Gibert Joint work with Artur Nicolau

Universitat Autònoma de Barcelona

New Developments in Complex Analysis and Function Theory, 02 July 2018

A Short Motivation

Consider the spaces of functions $f: I_0 = [0,1] \rightarrow \mathbb{R}$

• L^{p} , for $1 \leq p < \infty$, with

$$||f||_{L^p} = \left(\int_{I_0} |f(t)|^p dt\right)^{1/p},$$

• L^{∞} , with

$$\|f\|_{L^{\infty}} = \sup_{t\in I_0} |f(t)|,$$

and

BMO, with

$$\|f\|_{\mathsf{BMO}} = \sup_{I \subseteq I_0} \left(\frac{1}{|I|} \int_I |f(t) - f_I|^2 dt \right)^{1/2},$$

where $f_I = \int_I f(t) dt$

It is known that

$$L^{\infty} \subsetneq \mathsf{BMO} \subsetneq L^p \subsetneq L^q \subsetneq L^1$$
, for 1

A singular integral operator (e.g. H the Hilbert Transform) is bounded

- from L^p to L^p if 1 ,
- from BMO to BMO and
- from L^{∞} to BMO

J. Garnett and P. Jones (1978) characterised $\overline{L^{\infty}}$ for $\|\cdot\|_{BMO}$

A Different Setting

Consider the spaces of continuous functions $f: I_0 \rightarrow \mathbb{R}$

• $\operatorname{Lip}_{\alpha}$, for $0 < \alpha \leq 1$, with

$$|f(x) - f(y)| \leq C|x - y|^{\alpha}, \quad x, y \in \mathbb{R},$$

and

 \bullet the Zygmund class $\Lambda_*,$ with

$$\|f\|_* = \sup_{\substack{x \in I_0 \\ h > 0}} \frac{|f(x+h) - 2f(x) + f(x-h)|}{h} < \infty$$

It can be seen that

 $\mathsf{Lip}_1 \subsetneq \mathsf{\Lambda}_* \subsetneq \mathsf{Lip}_\alpha \subsetneq \mathsf{Lip}_\beta, \quad \text{ for } \mathsf{0} < \alpha < \beta < 1$

Singular integral operators are bounded

- from $\operatorname{Lip}_{\alpha}$ to $\operatorname{Lip}_{\alpha}$ for $0 < \alpha < 1$,
- from Λ_* to Λ_* and
- from Lip₁ to Λ_{*}

What could be a characterisation of $\overline{\text{Lip}_1}$ for $\|\cdot\|_*$?

Related open problem (J. Anderson, J. Clunie, C. Pommerenke; 1974):

• what is the characterisation of $\overline{\mathbb{H}^{\infty}}$ for the Bloch space norm?

Our Concepts

A function $f: I_0 \to \mathbb{R}$ belongs to

 \bullet the Zygmund class Λ_* if it is continuous and

$$\|f\|_{*} = \sup_{\substack{x \in I_{0} \\ h > 0}} \frac{|f(x+h) - 2f(x) + f(x-h)|}{h} < \infty,$$

• BMO if it is locally integrable and

$$\|f\|_{\mathsf{BMO}} = \sup_{I \subseteq I_0} \left(\frac{1}{|I|} \int_I |f(t) - f_I|^2 \, dt \right) < \infty,$$

• I(BMO) if it is continuous and $f' \in BMO$ (distributional) Note that I(BMO) $\subsetneq \Lambda_*$

Our Concepts

What is the characterisation of $\overline{I(BMO)}$ for $\|\cdot\|_*$?

Related problem:

P. G. Ghatage and D. Zheng (1993) characterised $\overline{\text{BMOA}}$ for the Bloch space norm

Notation

• Given $x \in \mathbb{R}, h > 0$, denote

$$\Delta_2 f(x,h) = \frac{f(x+h) - 2f(x) + f(x-h)}{h}$$

• If
$$I = (x - h, x + h)$$
, we say

$$\Delta_2 f(I) = \Delta_2 f(x, h)$$

• Given $f, g \in \Lambda_*$, consider

$$\mathsf{dist}(f,g) = \|f-g\|_*\,,$$

and given $X \subseteq \Lambda_*$, we say

$$\operatorname{dist}(f,X) = \inf_{g \in X} \|f - g\|_*$$

A Characterisation for I(BMO)

Theorem (R. Strichartz; 1980)

A continuous function f is in $I(\mathsf{BMO})$ if and only if

$$\sup_{I \subseteq I_0} \left(\frac{1}{|I|} \int_I \int_0^{|I|} |\Delta_2 f(x,h)|^2 \frac{dh \, dx}{h} \right)^{1/2} < \infty$$

The Main Result

Given $\varepsilon > 0$ and $f \in \Lambda_*$, consider

$$A(f,\varepsilon) = \{(x,h) \in \mathbb{R} \times \mathbb{R}_+ : |\Delta_2 f(x,h)| > \varepsilon\}$$

Theorem

Let $f \in \Lambda_*$ be compactly supported on I_0 . For each $\varepsilon > 0$ consider

$$C(f,\varepsilon) = \sup_{I \subseteq I_0} \frac{1}{|I|} \int_I \int_0^{|I|} \chi_{A(f,\varepsilon)}(x,h) \frac{dh \, dx}{h}.$$

Then,

$$dist(f, I(BMO)) \simeq \inf\{\varepsilon > 0 \colon C(f, \varepsilon) < \infty\}.$$
(1)

Denote by ε_0 the infimum in (1)

Generalisation to Zygmund Measures

• A measure μ on \mathbb{R}^d is a Zygmund measure, $\mu \in \Lambda_*(\mathbb{R}^d),$ if

$$\left\|\mu\right\|_* = \sup_{Q} \left|\frac{\mu(Q)}{|Q|} - \frac{\mu(Q^*)}{|Q^*|}\right| < \infty$$

- A measure ν on \mathbb{R}^d is I(BMO) if it is absolutely continuous and $d\nu = b(x) dx$, for some $b \in BMO$
- For $(x, h) \in \mathbb{R}^d \times \mathbb{R}_+$, let Q(x, h) be a cube with centre x and I(Q) = h, and denote

$$\Delta_2 \mu(x,h) = \frac{\mu(Q(x,h))}{|Q(x,h)|} - \frac{\mu(Q(x,2h))}{|Q(x,2h)|}$$

• Given $\varepsilon > 0$ and $\mu \in \Lambda_*$, consider

$$A(\mu,\varepsilon) = \{(x,h) \in \mathbb{R}^d \times \mathbb{R}_+ : |\Delta_2 \mu(x,h)| > \varepsilon\}$$

Generalisation to Zygmund Measures

Theorem

Let $\mu \in \mathbb{R}^d$ be compactly supported on Q_0 . For each $\varepsilon > 0$ consider

$$C(\mu,\varepsilon) = \sup_{Q \subseteq Q_0} \frac{1}{|Q|} \int_Q \int_0^{I(Q)} \chi_{A(\mu,\varepsilon)}(x,h) \frac{dh \, dx}{h}$$

Then,

$$\mathsf{dist}(\mu,\mathsf{I}(\mathsf{BMO}))\simeq\inf\{\varepsilon>0\colon C(\mu,\varepsilon)<\infty\}.$$

Further Results and Open Problem

• Generalisation for Zygmund measure μ on \mathbb{R}^d , $d \ge 1$ that is for μ with

$$\left\|\mu\right\|_{*} = \sup_{Q} \left|\frac{\mu(Q)}{|Q|} - \frac{\mu(Q^{*})}{|Q^{*}|}\right| < \infty$$

- Application to functions in the Zygmund class that are also $W^{1,p},$ for 1
- ullet We can't generalise the results for functions on \mathbb{R}^d for d>1

The Idea for the Proof

$$A(f,\varepsilon) = \{(x,h) \in \mathbb{R} \times \mathbb{R}_+ : |\Delta_2 f(x,h)| > \varepsilon\}$$

Theorem

Let $f \in \Lambda_*$. For each $\varepsilon > 0$ consider

$$C(f,\varepsilon) = \sup_{I \subseteq I_0} \frac{1}{|I|} \int_I \int_0^{|I|} \chi_{A(f,\varepsilon)}(x,h) \frac{dh \, dx}{h}.$$

Then,

$$\mathsf{dist}(f,\mathsf{I}(\mathsf{BMO}))\simeq \varepsilon_0=\inf\{\varepsilon>0\colon C(f,\varepsilon)<\infty\}.$$

The easy part is to show that $dist(f, I(BMO)) \ge \varepsilon_0$

Our Tools

- I is dyadic if it is $I = [k2^{-n}, (k+1)2^{-n})$, with $n \ge 0$ and $0 \le k < 2^n 1$
- $\mathcal D$ the set of dyadic intervals and $\mathcal D_n$ the set of dyadic intervals of size 2^{-n}
- $S = \{S_n\}_{n \ge 0}$ is a dyadic martingale if • $S_n = S_n(I)$ constant on any $I \in \mathcal{D}_n$ for $n \ge 0$ and • $S_n(I) = \frac{1}{2}(S_{n+1}(I_+) + S_{n+1}(I_-))$
- $\Delta S(I) = S_n(I) S_{n-1}(I^*)$, for $I \in \mathcal{D}_n$ and $I \subseteq I^* \in \mathcal{D}_{n-1}$
- For f continuous, define the average growth martingale S by

$$S_n(I) = rac{f(b) - f(a)}{2^{-n}}, \quad I \in \mathcal{D}_n,$$

for each $n \ge 1$ and where I = (a, b)

• if $f \in \Lambda_*$, its average growth martingale S satisfies

$$\|S\|_* = \sup_{I \in \mathcal{D}} |\Delta S(I)| < \infty$$

• if $b \in BMO$, its average growth martingale B satisfies

$$\|B\|_{\mathsf{BMO}} = \sup_{I \in \mathcal{D}} \left(\frac{1}{|I|} \sum_{J \in \mathcal{D}(I)} |\Delta B(J)|^2 |J| \right)^{1/2} < \infty$$

These are related to the dyadic versions of our spaces...

A function $f: I_0 \to \mathbb{R}$ belongs to

• the dyadic Zygmund class Λ_{*d} if it is continuous and

$$\|f\|_{*d} = \sup_{I \in \mathcal{D}} |\Delta_2 f(I)| < \infty,$$

• to BMO_d if it is locally integrable and

$$\|f\|_{\mathsf{BMO}\,d} = \sup_{I\in\mathcal{D}} \left(\frac{1}{|I|}\int_{I} |f(t) - f_{I}|^{2} dt\right)^{1/2} < \infty,$$

• to $I(BMO)_d$ if it is continuous and $f' \in BMO_d$ (distributional)

The Easy Version of the Theorem

Theorem

Let $f \in \Lambda_{*d}$. For each $\varepsilon > 0$ consider

$$D(f,\varepsilon) = \sup_{I \in \mathcal{D}} \frac{1}{|I|} \sum_{\substack{J \in \mathcal{D}(I) \\ |\Delta_2 f(J)| > \varepsilon}} |J|.$$

Then,

$$dist(f, I(BMO)_d) = inf\{\varepsilon > 0 \colon D(f, \varepsilon) < \infty\}.$$

We can construct a function that approximates f using martingales

The Last Pieces

Theorem (Garnett-Jones, 1982)

Let $\alpha \mapsto b^{(\alpha)}$ be measurable from \mathbb{R} to BMO_d , all $b^{(\alpha)}$ supported on a compact I_0 , with $\|b^{(\alpha)}\|_{\mathsf{BMO}\,d} \leq 1$ and

$$\int b^{(\alpha)}(t)\,dt=0.$$

Then,

$$b_R(t) = \frac{1}{2R} \int_{-R}^{R} b^{(\alpha)}(t+\alpha) \, d\alpha$$

is in BMO and there is C > 0 such that $||b_R||_{BMO} \leq C$ for any R > 0.

The Last Pieces

Theorem

Let $\alpha \mapsto h^{(\alpha)}$ be measurable from \mathbb{R} to Λ_{*d} , all $h^{(\alpha)}$ supported on a compact I_0 , with $\|h^{(\alpha)}\|_{*d} \leq 1$. Then,

$$h_R(t) = \frac{1}{2R} \int_{-R}^{R} h^{(\alpha)}(t+\alpha) \, d\alpha$$

is in Λ_* and there is C > 0 such that $\|h_R\|_* \leq C$ for any R > 0.

Ευχαριστώ πολύ